Age effects on tinnitus and hearing loss in CBA/CaJ mice following sound exposure
نویسندگان
چکیده
Tinnitus is a maladaptive neuropathic condition that develops in humans and laboratory animals following auditory insult. In our previous study we demonstrated that sound exposure leads to development of behavioral evidence of tinnitus in a sample of exposed mice. However, this tinnitus mouse model did not account for long-term maladaptive plasticity or aging, factors that are commonly linked to the human tinnitus population. Therefore the same group of mice was monitored for tinnitus for 360 days post exposure. Tinnitus was assessed behaviorally by measuring gap-induced pre-pulse suppression of the acoustic startle (GPIAS). Cochlear histology was performed on both control (unexposed) and experimental mice to determine whether sound exposure caused any evident cochlear damage. We found that 360 days after exposure the vast majority of exposed mice exhibited similar gap detection deficits as detected at 84 days post exposure. These mice did not demonstrate significant loss of inner/outer hair cells or spiral ganglion neurons compared to the control sample. Lastly, we demonstrated that GPIAS deficits observed in exposed animals were unlikely exclusively caused by cochlear damage, but could be a result of central auditory maladaptive plasticity. We conclude that CBA/CaJ mice can be considered a good animal model to study the possible contribution of age effects on tinnitus development following auditory insult.
منابع مشابه
FVB/NJ mice demonstrate a youthful sensitivity to noise-induced hearing loss and provide a useful genetic model for the study of neural hearing loss.
The hybrid mouse diversity panel (HMDP), a panel of 100 strains, has been employed in genome wide association studies (GWAS) to study complex traits in mice. Hearing is a complex trait and the CBA/CaJ mouse strain is a widely used model for age-related hearing loss (ARHI) and noise induced hearing loss (NIHL). The CBA/CaJ strain's youthful sensitivity to noise and limited age-related loss led u...
متن کاملLoss of Myh14 Increases Susceptibility to Noise-Induced Hearing Loss in CBA/CaJ Mice
MYH14 is a member of the myosin family, which has been implicated in many motile processes such as ion-channel gating, organelle translocation, and the cytoskeleton rearrangement. Mutations in MYH14 lead to a DFNA4-type hearing impairment. Further evidence also shows that MYH14 is a candidate noise-induced hearing loss (NIHL) susceptible gene. However, the specific roles of MYH14 in auditory fu...
متن کاملNoise induced hearing loss impairs spatial learning/memory and hippocampal neurogenesis in mice
Hearing loss has been associated with cognitive decline in the elderly and is considered to be an independent risk factor for dementia. One of the most common causes for acquired sensorineural hearing loss is exposure to excessive noise, which has been found to impair learning ability and cognitive performance in human subjects and animal models. Noise exposure has also been found to depress ne...
متن کاملGenetic and temporal aspects of protection by kanamycin against cochlear noise injury
Experiments explored the minimal kanamycin dosing regimen that renders protection against noise induced hearing loss in young CBA/J mice. We also tested the age-dependence of protection in CBA/J as well as the dependence of protection on a particular genetic background in experiments using young C57BL/6J and CBA/CaJ mice.
متن کاملAcceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth.
Age-related and noise-induced hearing losses in humans are multifactorial, with contributions from, and potential interactions among, numerous variables that can shape final outcome. A recent retrospective clinical study suggests an age-noise interaction that exacerbates age-related hearing loss in previously noise-damaged ears (Gates et al., 2000). Here, we address the issue in an animal model...
متن کامل